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Abstract:
from point of view of diffusion process is presented. The time-depend-

In this talk a review on recent progress of fission theory

ent fission rate is calculated with a simplified model for illustra-
tion. The transient phenomena are revealed. By comparison of the fis-
the latter
is emphasized for actual calculation. Some current progress on more

sion rate calculated both at saddle and scission points,

realistic calculations related to the enhancement of the neutron emis-
sion prior to fission induced by heavy ion reactions is reported. The

quantum effects which are important for low energy nuclear fission

and the extension to multi-dimensional cases are also discussed. A

self-consistent model to treat all the fission phenomena in a uni-
fied way, which might be also useful in the nuclear data evaluation is

expected to be established in near future.

(diffusion model,
scission point, propagator)

fission rate,

Introduction

Nuclear fission is one of the most
important foundations for the nuclear
science and technology. Although fifty
years have passed since the discovery of
nuclear fission, its theory is still far
from completion.

The standard way in the nuclear data
evaluation to calculate the fission rate
(width) is to use the Bohr-Wheeler for-
mula, which is based on the assumption of
attaining instantaneous thermodynamic
equilibrium between the compound-nucleus
configuration and the saddle point, since
nuclear fission is a dynamical process
(large amplitude motion) evolving from
ground-state configuration to scission
point (via saddle point), the thermo-
dynamic equilibrium theory of Bohr-Wheeler
cannot fully account for the entire fis-
sion process., Thus, as early as in 1940
Kramers1 suggested to describe the nu-~
clear fission as a diffusion process by
solving Fokker-Planck equation (FPE).

transient phenomena,

saddle point,

However, he solved FPE only in a quasi-
stationary approximation for limiting
cases of small and large viscosity coef-
ficients. The recent success of diffusion
model in the studies of heavy ion reac-
tions has revived the old suggestion of
Kramers on fission problems. During the
past few years, the earlier Kramers work
has been re-examined and greatly extended
2-19 the task of this

talk is to give a breif report on this

by various authors.

recent progress. We anticipate that fur-
ther studies and development of such
theory will eventually be useful also in

nuclear data evaluation.

The Classical Diffusion Model

Basic Consideration and Definition

In the diffusion model of nuclear
fission the motion of shape deformation
of fissioning nucleus is treated as dif-
fusion of Brownian Particle, the motion

of nucleons inside the nucleus as a heat
bath and the collision of nucleons with

*This work is supported by the National Natural Science Foundation of China.
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the nuclear wall as a classical random
force. The strength of these
by the viscosity coefficient g . In

this model, the shape deformation coordi-

is measured

nate x and its canonical conjugate momen-

tum P are treated as classical variables
and the distribution function W(x,p) is
assumed to obey a Fokker-Planck equation
(FPE). In two-dimensional phase space
this equation is written as

awl,pt) P awlpt) |
at ™m X
(M
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sp (BP-Tewpp]+p 520
Here,
F(x) = - 5% U(%) (2)

relates to the potential of the fission-
ing system U(x), and B is the viscosity
coefficient mentioned above,The diffusion
coefficient D is given by

D=6Tm (3)

where m is the inertia mass of the fis-
sioning system and T is the nuclear tem-
perature which is related to the excita-
tion energy E* and the level density par-
ameter a by the empirical formula as:

E' = arT? (4)

Supposed the system is initially
given by a narrow distribution, which
evolves with time and widens due to ran-

dom collisions. In this way, the diffusion

current across the saddle point Xs to

SC

reach the scission point X is finally

obtained and denoted as:

. w p .
gt o= T —wGt e e (9)

- 00
With x1 = x5 or S€
Let

Tt o= %, ax §2 wix,p,tyat (6)

be the probability that the system is to
the left of x , then the time-dependent

fission rate or fission width [Tp(t) can

be defined by

ri'.(t):’fmf(t)=hJ(Xi’t)/n(xi,t) @

For sufficiently large t, and for values
of B

[T is expected to attain the quasi-

which are not unreasonably small,

stationary values given by kramers
BwW B
I"%:rf [1+(-——-)2] 3 - __ﬁ__ (8)
2W, 20,

Where Wy is the frequency of the inverse
harmonic oscillator potential that os-
culates the fission barrier at the sad-
dle point. r’§W is the one which often
refers to as being given by the transi-
tion state method and can be identified
with the Bohr-Wheeler expression. It is
noted that the modification of the Bohr-
Wheeler formula due to kramers by inclu-
ding a dissipation dependent factor
reduces the value of the fission width
for finite g .

Calculation of the Fission Rate

For illustration purpose, we just
consider a schemetic model with a poten-
tial of the fissioning system consisting
of two smoothly joined parabolas. The
examples given below with parametirs
specified as: the inertia mass m=——— m,
with mg the nucleon mass, and A = 240.
Assuming that m, T and A3 are all in-
dependent of x, we solve the FPE to ob-
tain the fission rates Ag(t) by Eq.(7)
shown in Fig. 1, for both at saddle point
and scission point,

b
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Fig. 1. The fission rate (in units of
10%° sec™!) for E. = 4 Mev, B = 7.5%10°"

sec™! and for two values of T as indi-

cated versus time t (in units of 10722
sec). The full curves are the results at
saddle point (A3) and the dashed-dotted
curves are the results at scission point
(k?c). The dashed straight lines cor-

responds to the quasi-stationary values

of kramers.

As the solution of the FPE describes
the gradual spreading of the initial dis-
tribution with the probality current over
the fission barrier and finally arriving
at scission point, one would expect the
transient process to occur. It is shown
in Fig. 1., however, the transient be-
havior at the saddle point is quite dif-
ferent from that at the scission point
for different ratio of T/Ef. At the
saddle point, for T<Eg, A?(t) rises grad-
ually from O at t = O to the gquasi-sta-
tionary value after a time interval <
(which is often denoted as transient
time), while for T>Es, Ag(t) increases
rapidly first and decreases later to the
quasi-stationary value. Thus, according
to the differences in the transient be-
havior at the saddle point, one would
expect that there exist two regimes of
T/Ef. We call T<E¢ the kramers regime, in
which the enhancement of the neutron
emission prior to fission is anticipated
and call T)Ef the over shooting regime,
in which the opposite effects are ex-
pected. For a realistic description,
however, it is necessary to evaluate the
fission rate at the scission point. It is
very interesting to see in Fig. 1, that
in addition to a time delay due to the
system to transverse the distance from
the saddle point to the scission point,
the fission rate X?c(t) always gradually
rises to the quasi-stationary value even
in case of T>Ef. Thus it seems more rea-
sonable to introduce the transient time
T for this case rather than for the case
at saddle point. We can define T as a
characteristic time required for the cur-
rent to reach, say, 90% of the quasi-sta-

tionary value at the scission point. If
T is comparalle to the average life
time‘ﬁ/ra for neutron emission, where M
is the neutron width, one expectis to
find of the order of one more neutron
emitted prior to fission than is calcu-
lated with a statistical model. The sup-
presion of the fission width within the
diffusion model seems to be supported by
the recent experimental measurement on

average neutron multiplicityao.

Average Neutron Multiplicity

We show here an example15 based on
a more realistic calculation on neutron
multiplicities prior to fission, in the
case of the reaction ]60 + ]and —»158Er

at 207 MeV. It is shown in
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Fig. 2.
versus the reduced dissipation coeffi-
cient A . The curves labelled SM,T, and
SST refer to the statistical model, the
inclusion of transients (defined at

5 paﬁ'J)

2 4
Average neutron multiplicity {y)

saddle point) and the mean saddle-to-
scission time, respectively. The exper-
imental resultao is given by the shaded
band, whose upper intersection with the
so0lid curve determines the upper 1limit
of @ indicated by the vertical dashed

line.

Pig. 2, that the enhancement of the
neutrons emitted prior to fission can be
reasonably understood in terms of neutron
emission during the transient time re-
quired to build up the quasi-stationary
current over the barrier and the mean
time required for the system to descend
from the saddle point to scission point.
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These authors even have determined the
limit B € 5x 102! sec”!
nuclear dissipation coefficient. This

for the reduced

quantitative conclusion, however, should
not be taken too seriouly and further
more systematic studies and improvement
are needed.

Quantum Effects in Diffusion Model

The diffusion model discussed in
previous section is purely classical one
which is applicable only for describing
the fission process at high temperature.
In order to extend the classical diffu-
sion model to low temperature regime the
quantum effects should be included. For

this purpose a simple model of quantum
system has been established'’ to repro-~

duce the classical FPE at high tempera-
lure and to retain the quantum effects

at low temperature case. This model Ham-
iltonian has three parts:

H=H, + H, + H

B * Hp 9

A
Where Hy is the Hamiltonian of the sub-
system A considered in the problem, that
is the quantum Brownian motion in the
fission potential. Hp is the Hamiltonian
of '"heat bath" consisting of N harmonic
oscillators, and Hy is a linear coupling
term between the subsystems A and B with
a coupling strength C, (k runs from 1 to
N). In order to make a connection between
this microscopic coupling strength with
the macroscopic viscosity and to repro-
duce the TFPE at high temperature, the
distribution density of oscillator fre-
quencies for subsystem'B is introduced
as done, for instance, in solid state
physicsa1.

fD(W)CZ(W)= {ZmbYkWE/ﬂ- W<ﬂ(]o)

0 w>Q

Here, 7 1is the viscosity coefficient, ¢
the distribution density of oscillators
in subsystem B with a high frequency Cut-
off 52 . According to formula (10), a

discrete distribution of oscillator fre-
quencies is replaced by a continuous one.

This replacement is very crucial in a
sense that leads the microscopically
reversible process to the macroscopically
irreversible one. Hence, the subsystem B
has become a real heat bath now.

So far the potential in the sub-
system A is general. In the investiga-
tion of the diffusion process it has
already been proved that the locally
harmonic approximation can be used to
solve the FPE for real fission potential
quite well except for very small viscos-
ity16. It seems resonable to extend
this approach to the quantum case. In
this approximation, the fission potential
can be divided into many small regions,
each of them can be approximated by a
harmonic oscillator with the frequencies
depending on collective coordinate x.
Based on this simplified model by means
of Feynman-Vernon theory an analytical
expression for the reduced density oper-
ator can be obtained for each small re-
gion of the fission potential. The final
reduced density operator for the whole
fission potential can easily be carried
out numerically as done in the classical
case within the locally harmonic approx-
imation.

The calculated results of the fis-
sion rates at the saddle point are il-
lustrated in Fig, 3 for both quantum
(solid curves) and classical (dashed
curves) cases at temperature of T = 0.5
and 8 MeV. It is seen that at T = 8 MeV,

Quantum case Ey =4MeV
——~~ Classical F-Pequa. ’F:QS(W"§5

T
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Fig. 3. The fission rates for both quan-
tum and classical cases are versus time
t. All results are calculated for a fis-
sion barrier Ef = 4 MeV and a reduced :

viscosity coefficient B = 5)(102] sec” ',

the results of both quantum and classical
approaches are very similar. This implies
that the classical diffusion is the limi-
ting case of the quantum diffusion at
high temperature. In the lower part of
Fig. 3, the results for low temperature

T = 0.5 MeV are shown. Because of the
enhancement of the diffusion due to quan-
tum effects the fission rate in quantum
case is considerably larger than that in
classical case in low temperature region
as expected. This model seems to have
improved the behavior of the classical
diffusion at low temperature by including
the quantum effects and kept its reason-
able features at high temperature. Fur-
ther work concerning the its link with
the microscopic foundation and comparison

with experiments is very much encouraged.

Multi-dimensional Case

Generally speaking, for a descrip-
tion of the shape deformations occuring
during the fission process several de-
grees of freedom are necessary. In this
respect, the induced fission is described
in terms of a FPE for N degrees of free-
dom. Owing to the difficulty in solving
multi-dimensional FPE in a general way,
progress has only been made in some
specific cases with various approxima-~

tions.

Stationary Diffusion Over a Multi-dimen-

sional Figsion Barrier

The Kramers' formula has been gener-
alized to stationary diffusion over a
potential barrier for N degrees of free-
dom.2’9’14 From a calculation of the two-
dimensional case compared with that of
one-dimensional case, it is found that
the deviation is not significant within
a reasonable range of parameters]u. Thus,
it will not be described in details here.

Fission-Fragment Kinetic Fnergy and Mass

Distributions

In order to descrobe the kinetic
energy or mass distribution of the fis-
sion fragments more than two degrees of
freedom for shape deformations are nece s-
sary. Recently several authors18’]9 have
performed this kind of calculation based
on (C,h,%) parameterizationZI. Two de-
formation parameters describe symmetric
shape that is ¢ and h which describe the
elongation and necking, respectively.
The parameter oL characterizes the left-
right asymmetry of the mass. In actual
calculation, instead of C, the parameter

§ is used as an elongation coordinate
which is defined as the half of the dis-
tance between the centers of mass of the

two future fragments.
The variances of mass distribution

of fission fragments from a number of
the excited nuclei (the temperature of
these nuclei at the saddle point Tga1.5
MeV) have been calculated based on FPE1

which are shown in Fig. 4 (dased curves).
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Fig. 4. The variances of mass distribu-

tion versus fissibility parameter x, The
squares correspond to experimental
values.22’23 The dashed curves represent
the calculated results taken from Ref.18,
while the sull triangles are also the
thcoretical values taken from Ref. 19,.

Some preliminary results“%alculated with
l,angevin equation are also shown there
(full triangles).

It is seen that the calculations
can reproduce the experimentally observed
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increase of the mass variance with of
growth of the fissibility parameter x.
This increase of the calculated variances
is mainly due to a considerable decrease
in the stiffness coefficients correspond-
ing to the saddle points for heavy fis-
sioning nuclei and to the non-equilibrium
character of the decent from saddle to
scission,

The variances of the kinetic energy
distribution calculated both with FPE'®

and Langevin equation19 are shown in
Fig. 5.
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Fig. 5. The variance of the kinetic

energy distribution versus parameter ZZ/A.
The squares represent the experimental
datazh, while the dashed and solid curved
correspond to the calculations based on

F‘PE18 and on Langevin equation19, respec-
tively.

In the calculation, the fluctuations
in collective coordinates near scission
and prescission kinetic energy have been
taken into account simultaneously. Owing
to the fact that heavy fissioning nucleus
can attain greater elongation without
neck rupture than the light one, the
fluctuation in collective coordinate ra-
pidly increases with 2°/8. As a result
the variances increase with ZZ/A are un-
derstandable, since the fluctuations in
collective coordinates contribute the
main part to the variances, The calcula-
tions again are in agreement with the ex-
perimental data.

Regarding the extension to multi-
dimensional calculation based on diffusion

model, it seems the Langevin equation

which is equivalent to FPE has the advan-~

tage in saving the computer time and is
more convenient and feasible to compute
for cases with coordinate dependent par-

ameters by Monte-Carlo simulation method.
Conclusion

The recent progress in nuclear fis-
sion theory based on diffusion model has
been breifly reported. The Basic assump-
tion of this model lies in the fact that
the single-particle degrees of freedom

-a2 sec) much faster

are equilibrated (~10
than the relaxation time of deformation
shape (10-2] sec).

The standard statistical and dynam-
ical models are two limiting cases of
diffusion model.

The results obtained so far with
this model are encouraging. This provides
us with a good basis for further studies,

Up to now only the classical one-
dimensional problems have been investi-
gated rather thoroughly, further studies
on quantum effects and extension to
nulti-dimensional cases are needed.

It is hopeful that whithin a few
years we can eventually establish a
self-consistent theory to treat all fis-
sion problems in an unified way, which
might also be useful in nuclear data
evaluation.
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